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Problem statement

Embeddings - dense vector representations of data

Capture essential features, relationships, and contextual
information

Usage:

Transfer learning
Training data is limited
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Word embeddings example

Figure: Example of word embeddings [Cas23]
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Image embeddings example

Figure: Example of image embeddings [Fat24]
Alexandru-Gabriel Ŝırbu WeaMyL
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Evaluation

Incorporate in related tasks

Clusterization of similar inputs
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BERT [Dev18]

Trained only on natural language text

Masks 15% of the input tokens

Predicts masks based on context

Integrates next-sentence prediction
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BERT Training example

Figure: Example of BERT masked token prediction [Sha23]
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CodeBERT [FGT+20]

Based on BERT

Trained on natural language text and programming languages

Code snippets are treated as simple tokens

Bimodal - can handle both natural language and programming
language data
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CodeT5 [WWJH21]

Encoder-Decoder architecture

Bimodal

Optimized for code-related tasks

Denoise code
Mask tokens
Tag and predict masks
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Embeddings evaluation for LLMs [PMCF25]

Evaluated TF-IDF, BERT, Ada-002 from OpenAI, Falcon,
LLaMA-2

Algorithms: K-Means, K-Means++, Agglomerative
Hierarchical Clustering, Fuzzy CM, Spectral Clustering

Metrics: F1-score, Rand index, homogenity, Silhouette score,
CHI score

Used both supervised and unsupervised metrics
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BERT embeddings evaluation [YAH23]

Task: group newspaper articles into their categories

Algorithms: K-Means, DBSCAN

Metrics: Silhouette score, Dunn index
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Our proposal

Literature approaches:

Treat code as simple tokens
Same model for text and code

Encode the code to capture structure knowledge

Single responsibility principle: embeddings just for code

Evaluation on clusterization of similar data

Compare to CodeBERT and CodeT5
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Abstract Syntax Tree

Hierarchical structure

Describes relationships within the code

Can be converted to/from code
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Abstract Syntax Tree example

Figure: Comparison between a section of code (left) and its equivalent
Abstract Syntax Tree (right)
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Abstract Syntax Tree - issues

Figure: AST highlighting the redundancies in the leaves
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Abstract Syntax Graph

Compact alternative of an AST
Repeated leaf nodes are concatenated
Reduces the number of nodes generated
Edges are inserted between two nodes of the same parent -
introduces order
Cycles are introduced into the structure - models re-usability

Figure: Comparison between an AST (left) and an ASG (right)
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Introduction
Related work
Our proposal

Conclusions and future work

Methodology

Encode the code as an ASG
Train on:

Next node prediction
Next edges prediction

Evaluate by clusterization

Figure: Overview of the graph generation model [LLS+19]
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Model architecture

Figure: Abstract Syntax Graph-based model architecture
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Clusterization

Distance: Cosine Similarity

Evaluation metric: Silhouette score

Algorithms: K-Means, DBSCAN, Spectral Clustering
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K-Means

Partitions data into k clusters

Data belongs in the cluster with the nearest mean

Requires the use of elbow method, since k is not known
beforehand

Alexandru-Gabriel Ŝırbu WeaMyL
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DBSCAN

Density based clustering algorithm

Groups together points that are closely packed

Marks outliers

Finds non-linearly separable clusters
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Spectral Clustering

Uses k eigenvalues of the similarity matrix of the data

Groups data in lower dimensions

Requires the use of elbow method for k
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Results

Table: Silhouette Scores for Clustering Embeddings from the proposed
model, CodeBERT and CodeT5

Model K-Means DBSCAN Spectral Clustering

CodeBERT 0.05976184 0.19362077 0.2615287

CodeT5 0.06064902 0.19752871 0.2663004

Proposed Model 0.06255425 0.20006323 0.2694121
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Discussion

Code as simple tokens ⇒ programming language
independence

ASTs and ASGs require a parser

Parser’s quality influences our model’s quality

ASG embeddings capture structural relationships
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Conclusions

Powerful framework for code representation

Increased quality of the embeddings

Trained for code generation tasks

Code completion
Code summarization
Code translation
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Future work

Evaluate in code-related tasks, e.g., Software Defect
Prediction

Measure performance gain against ASTs

Train on a task of Masked Node Prediction and Edge
validation
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Thank you!
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